Assembling a Digital Operations Toolbox for Hyperautomation

In this article, we’ll explore the components of a digital operations toolbox and how it can be leveraged in your hyperautomation journey.

Breaking Down The Digital Operations Toolbox

In the realm of hyperautomation, a digital operations toolbox serves as an evolutionary shift — moving task-based technologies, tools and functions like process mining, RPA and document ingestion into digital operation drivers.

Image Source — Gartner
  • BPM Platforms: Intelligent BPM suites (iBPMS) have a solid foundation of tools for orchestrating processes and automating tasks within those processes. iBPMS consolidate integration services, decision management, process orchestration, ad-hoc processes and advanced analytics into a single platform.
  • Robotic Process Automation (RPA): RPA is a non-invasive integration technology used to automate routine, repetitive and predictable tasks through orchestrated UI interactions that emulate human actions within the workforce.
  • Low-Code Application Platforms (LCAP): The graphical nature of LCAP development environments can be used for modeling rapid automation of a business process. Most LCAP vendors offer business process orchestration and workflow services to rapidly automate tasks and orchestrate them into simpler processes.
  • Process Mining and Discovery/Analytics: Process mining is designed to discover, monitor and improve real processes by extracting knowledge from the event logs readily available in application systems. Process mining includes automated process discovery, conformance checking and various other advanced analytics features.
  • Decision Management Suites (DMS) & Business Rules Management Systems (BRMS): DMSs are used to supplement conventional application development and runtime tools when a business application includes decisions that entail complicated or frequently changing logic. Modern DMS products have evolved beyond business rule management systems by providing better support for analytics and decision modeling.
Image Source — Gartner
  • Augment Business Processes With AI: To expedite hyplerautomation, an integrated system of intelligence adequately blends digital operations tools with AI, ML, Natural Language Processing (NLP), Optimal Character Recognition, and conversational chatbots.
Image Source — Gartner

Digital Operations Tools and Use Cases

Recommendations When Implementing AI, ML or NLP

  • Find use cases for optimal application of each AI area — including ML, NLP, OCR and chatbots.
  • Secure availability of good quality historical data to train the ML models.
  • Plan for narrow, quick, iterative AI wins in business operations.
  • Look for Auto-ML features to enable RPA processes to capitalize on ML and NLP accelerators.
  • Estimate the required resource skill sets, time, costs and complexity involved in building AI models to justify the business case.
  • Check all factors, including actors, trigger points, subsystem boundaries, interfacing APIs, exception handling and edge cases where human interventions are required.
  • Train the models — Auto-ML engines use input and output of data from completed manual tasks to pick algorithms, train the models and insert models into the automation in a nondisruptive fashion.
  • Exploit AI accelerators from the major cloud service providers (CSPs) that might be included within your LCAP, DMS, BPM, RPA and iPaaS platforms.

Looking for more on hyperautomation?

Explore more insights and expertise at

Keep Reading: What is Hyperautomation? How to Automate End-to-End Processes

Originally published at on April 14, 2020.

We’re geeks for the enterprise systems and tech that sustains and strengthens business. Simplifying business transformation.